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Abstract

Unit selection text-to-speech (TTS) conversion is an ongoing
research issue for the speech synthesis community. This paper
is focused on tuning the weights involved in the target and the
concatenations cost metrics. We propose a method for automat-
ically tuning these weights simultaneously by means of diphone
pairs. This method is based on techniques provided by the evo-
lutionary computation community, taking advantage of their ro-
bustness in noisy domains. The experiments and their analysis
show its good performance in this problem, overcoming some
constrains assumed by previous works and being an interesting
framework for further investigations.

1. Introduction
Concatenative speech synthesis based on unit selection tech-
niques has become a basic technology for Text-to-Speech (TTS)
conversion in recent years [1, 2, 3]. These techniques overcome
limitations of synthesis from diphone based methods with only
one instance per unit. They minimize the number of artificial
concatenation points, reducing the need for prosodic modifica-
tion at synthesis time. This is due to the use of a large database
of continuous read speech where many instances of every unit
are stored. The selection process makes use of dynamic pro-
gramming techniques in order to obtain the sequence of units
that minimize a cost function at run-time [4]. In fact, it is im-
portant to note that the database has to be designed to cover as
much linguistic variability as possible, given a particular lan-
guage or a limited domain [5].

Unit selection TTS systems can produce sentences with
good intelligibility and naturalness, nevertheless, this quality
cannot usually be maintained along the whole sentence. There-
fore, there is still a substantial amount of work to be done for
tuning all parameters and features involved in the selection pro-
cess [5]. For instance, the elements of the cost function must
be optimized in order to find the set of units from the database
that best matches the target sequence of speech sounds. Design-
ing the appropriate measures, as well as correctly tuning them
(e.g. adjusting weights), is essential for achieving high quality
synthetic speech.

Weight tuning is one of the most difficult issues in this train-
ing process. Hunt and Black presented two approaches in [4].
The first one was based on adjusting the weights through an ex-
haustive search of a prediscretized weight space (weight space
search, WSS). The second one proposed by the authors used
a multilinear regression technique (MLR), across the whole

database to compute the desired weights. Later, Meron and Hi-
rose [6] presented a methodology that improved the efficiency
of the WSS and refined the MLR approach. They also described
a new extension of these procedures by using unit pairs in the
training process and considering prosodic modification at syn-
thesis time. In this paper we propose a novel approach based on
population search algorithms for weight optimization.

Section 2 presents the elements involved in the unit selec-
tion process. Then, section 3 describes the proposed method
for weight training. The conducted experiments and analysis
are presented in section 4. Finally, section 5 discusses some
conclusions for the work presented in this paper.

2. Unit Selection Cost Function
The cost function plays a leading role in the unit selection pro-
cess. It takes into account the unit distortion of the candidate
unit from the target (target cost, Ct), and the continuity distor-
tion between consecutive units (concatenation cost, Cc) [4].

Ct(ti, ui) =

p∑
j

wtjC
t
j(ti, ui) (1)

Cc(ui, ui+1) =

q∑
j

wcjC
c
j (ui, ui+1) (2)

The target and concatenation costs are defined as a weighted
sum ofp and q sub-costs, equations (1) and (2) respectively.
These measures are calculated as the difference of relevant
prosodic and phonetic features. Once the desired features, and
their corresponding weights, are defined, the unit selection pro-
cess is developed to minimize the cost function obtained from
the linear combination ofCt andCc across then units of the
utterance (equation (3)).

C(tni , u
n
i ) =

n∑
i

Ct(ti, ui) +

n−1∑
i

Cc(ui, ui+1) (3)

Different distance measures are proposed to score these sub-
costs, allowing symbolic, scalar and vectorial comparisons [3].
Recent efforts have been done looking for improving these mea-
sures [7, 8]. In a first approximation, we have only defined these
sub-costs in the prosodic framework, simplifying the computa-
tion of the cost function. Thus, in this paper we focus in the
weight training process. The target sub-costs of equation (1)
are measured scoring mean differences in pitch, energy and du-
ration between units (following equation (4)). The concatena-



tion sub-costs of equation (2) take into account the local differ-
ences in pitch, energy and Mel-frequency cepstral coefficients
(MFCC) at the point of concatenation (Right and Left values)
(see equation (5)).

Ctj(ti, ui) =

∣∣Pj(ti)− Pj(ui)∣∣−m(Ctj)

M(Ctj)−m(Ctj)
(4)

Ccj (ui, ui+1) =

∑N
1

∣∣PRj (ui)− PLj (ui+1)
∣∣−m(Ccj )

M(Ccj )−m(Ccj )
(5)

These measures are normalized by means of the minimum (m)
and the maximum (M ) values of the sub-cost of the parameter
Pj for the analyzed unit or set of units.N represents the num-
ber of concatenative parameters considered (equation 5). In our
approach,N = 1 for pitch and energy sub-costs and it is the
number of cepstral parameters for the MFCC measure.

3. Adjusting the Weights
Training the weights involved in unit selection (wt andwc, see
section 2) is not a trivial process. In a first approximation, they
can be obtained by some hand-tuning process that is percep-
tually supervised [3, 7]. However, we believe that automatic
training will achieve more robust results. Due to the nature of
the problem presented in section 2, it can be modeled as an opti-
mization problem where the decision variables are real-valued.
Weighted space search and multilinear regression are the two
main contributions to the automatic approach.

3.1. Weight Search Space

This technique discretizes the search space using a finite set of
possible weightsW. The optimal weight values are obtained
by analysis-by-synthesis exploration of all the possible variable
configurations, that is|W|p+q. Initially, this method was em-
ployed for training weights all together [4], then it was only
applied in concatenation weight tuning [1]. Later, Meron and
Hirose [6] accelerated the process by splitting it in two steps:
first precalculating the analysis (selection) and then, running the
synthesis (evaluation). Unfortunately, this powerful approach
becomes infeasible due to its prohibitive computational cost
when accurate adjustments are desired.

3.2. Multilinear Regression

This method is more robust than WSS due to the use of many
instances rather than only one data point. Also, the compu-
tational cost is reduced. The regression predicts the objective
distance by linear weighting the sub-costs measures. This train-
ing process is fully described in [4], where it is only applied to
target weight generation. In [6], MLR is applied to pairs of con-
catenated phones, thus, target and concatenation weights can be
tuned simultaneously.

3.3. Genetic Algorithms

Genetic algorithms (GA) [9, 10] are population-based search
algorithms. Inspired in natural evolution ideas, GA evolve a
population of candidate solutions (i.e. weights) adapting them
to a given environment, orfitnessfunction (i.e. unit selection
cost). This process takes advantage of mechanisms such as the
survival of the fittest and genetic material recombination.

The scheme of the proposed GA starts with a population
generated at random. Each individual is a vectorW (weight
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Figure 1: Scheme of simple genetic algorithm.

configuration) containing the weights to be adjusted, that is
W = (wt1, . . . , w

t
p, w

c
1, . . . , w

c
q). Then, the population is eval-

uated. Each weight configuration is used for computing the cost
function of unit selection based on equation (3), as later ex-
plained. The next step performed by the GA is the survival of
the fittest weight configuration. This process, known asselec-
tion, builds a new population sampling the previous one. This
process is biased using the computedfitness. There are several
approaches to theselectionstep, however, we used deterministic
binary tournament selection due to its ability to deal with noisy
evaluations effectively [10]. Once the new population is ob-
tained, the individuals are recombined in two different phases.
The first one,crossover, given two randomly chosen individuals
with a probabilitypc, recombines the weight values producing
two new offsprings. This process is done using the one point
crossover operator [9]. Moreover, the offspring replace their
parents in the population. The second phase is known asmuta-
tion. It introduces random perturbations to the weights values
with a given probabilitypm. At this point, we have obtained a
new population that replaces the original one, starting the evo-
lutionary cycle again. This process stops when a certain final-
ization criteria is met (i.e. a fixed number of iterations).

The fitness computation is based on a database that has
been clustered into basic units. Computation follows several
steps. First, a random target unit is selected. This sampling
process allows us to reduce the computational cost required
for computing the fitness (cost function). Sampling also adds
noise to the evaluations. However, GA can perform efficiently
in noisy optimization problems [9, 10]. The second step com-
putes the cepstral distance between all parameterized candidates
and the randomly selected target, after a time-alignment follow-
ing a DTW path. Finally, thek-best acoustic units (this paper
assumesk=10) are used to obtain the final value for the cost
function (fitness). This value is computed as an average of the
weighted cost function involving the retrievedk-best individu-
als and using the weights of the individualW being evaluated
(see equation (3)). Thus, the fitnessf(W) can be summarized
as:

f(W) =
1

k

∑
i∈k-best

C(tni , u
n
i ) (6)
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Figure 2: Final fitness (cost value) computed across the runs.

4. Experiments and Analysis
The acoustic corpus used in the experiments is composed of
a simple collection of 1,520 Catalan sentences read by a pro-
fessional native male speaker. It is not a very large database
(approximately 10,000 units) and no greedy algorithm has been
carried out in the designing process. However, it is useful for
initial experiments on our ongoing research in unit selection.
Diphones and triphones are the basic units, opposed to half-
phones (or half-diphones) [2, 7]. We assume that this approach
will provide, at least, the same speech quality as a classic di-
phone TTS system with only one instance per unit.

As depicted in [6], the minimal training elements are unit
pairs, however, we use diphone and triphone pairs instead of
phone pairs. As early explained, concatenation and target
weights are tuned together. In order to show the usefulness
of the GA proposed in this paper for noisy optimization, we
conducted several experiments on basic unit clusters containing
more than 25 instances. The tests were performed using the fol-
lowing parameters:popSize = 200, iter = 100, pc = 0.3,
andpm = 0.003 [9, 10].

The /b@/ unit cluster (SAMPA notation) has been ran-
domly selected as benchmark for comparison of MLR, GA and
GA+MLR configurations. The latter represents a GA with a
percentage of initial population (10% − 50% ) obtained from
the MLR solution. Figure 2.a presents the statistics of the cost
function across all the instances of the benchmark cluster, given
the best weight configuration provided by the different tech-
niques. The weight solution obtained by means of the GA
presents better performance than the MLR result in terms of
mean cost, however with higher deviation. The non-designed
for this purpose database presents non-comparable distributions
of the examined sub-costs, biasing the solutions obtained by the
GA. The GA+MLR only reduces this deviation without improv-
ing the mean cost value, thus, it is discarded for the all units test.

The several runs of the GA have obtained different solu-
tions for the weights values. This is due to sampling procedure
introduced in the cost function by means of a target unit ran-
dom selection. Thus, thefitnesslandscape is highly multimodal
due to the noise addition and no classic optimization algorithm
can be carried out. Nevertheless, the GA can obtain good re-
sults due to its noise tolerant nature. After fitness computation
across all tested units (see figure 2.b), the solutions evolved by

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−2 −1 0 1 2

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

(a) GA

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

−2 −1 0 1 2

0.
02

0
0.

02
5

0.
03

0

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

(b) MLR

Figure 3: Quantile-Quantile plots of the costs achieved across
all units by the two compared methods.

the GA outperforms, in terms of mean and deviation values of
the resultant cost function, the ones achieved by MLR.

The cost function (C, see equations (3) and (6)) for both
algorithms across the tested units presents a quasi-normal dis-
tribution (see figure 3). Thus, at-test can be used for analyzing
the statistical significance of these results. This test shows that
CGA < CMLR with a confidence level ofp = 3.756 · 10−8.
This result reinforces the conclusion that the GA outperforms
MLR for weight tuning in unit selection synthesis.

Figures 4 and 5 depict two pair plots for the achieved
weights of both algorithms. Theω3

i=1 are the target weights
and theω6

i=4 are the concatenation weights. The diagonal of
these figures contains the histogram of each weight across all
units. The rest of sub-figures (ij cells) represent the relation-
ship between weight pairs (wi, wj). A superimposed smooth
line shows the character of this correlation: lineal, quadratic,
exponential, etc. The relationships of MLR weights are more
linear than the GA ones, however their fitness is worse (see fig-
ure 2). Moreover, the biased sub-cost behavior and the unit-
dependent tested clusters promotew3 (the target duration cost)
to be the most relevant measure for unit selection, showing the
importance of having a well-designed database.

The GA presents a higher computational cost when com-
pared to MLR. However, it grows linearly with the number of
instances in opposition to the WSS approach, which increases
exponentially. The optimal solution (the global minimum) is not
impossible, nevertheless, the WSS becomes computationally in-
feasible. For the WSS approach, an intensive discretization be-
comes essential (involving several weeks, or even months, of
computations) and for the GA method, an elitist process should
be included after several runs of the algorithm.

5. Conclusions
A new method based on GA for training simultaneously tar-
get and concatenation weights for unit selection TTS was pre-
sented. This method overcomes some constrains of previous
approaches, proving its usefulness across the experiments. GA
evolves highperforming weight configurations, taking advan-
tage of sampling and noise addition techniques.

Due to the use of diphone and triphone pairs, the searching
space is considerably increased in relation to the phone pairs.
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Figure 4: Weight analysis across the different units using MLR.

However, these units allow optimal concatenation at synthesis
time. Then, adjusting the weights involved in the unit selection
module of a TTS system is a time-consuming process. Thus,
determining the impact of the cluster information in the con-
vergence speed is also desirable. This method can be used for
training sets of weights for: (1) unit-dependent collection, (2)
cluster of similar units or (3) for all units together. From the
analysis presented in the previous section, we conclude that a
well-designed database for unit selection by means of a greedy
algorithm becomes essential for our purposes.

Our current ongoing work is focused on (1) designing a new
speech Catalan database, and (2) adjusting several elements in-
volved in the weight training process. For instance, considering
prosodic modifications when candidate units are compared to
the selected target unit [6] and enhancing the objective distance
measures used in the cost function [7, 8]. On the other hand, we
are also interested in analyzing context clustering [1] to avoid
target cost computation at synthesis time.

Furthermore, formal listening tests are planned in a near
future to evaluate the performance of the GA weights.
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Figure 5: Weight analysis across the different units using GA.
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